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1 Find the sum of the firstn terms of the series

1
1× 3

+ 1
2× 4

+ 1
3× 5

+ . . .

and deduce the sum to infinity. [5]

2 For the sequenceu1, u2, u3, . . . , it is given thatu1 = 1 andur+1 = 3ur − 2

4
for all r. Prove by

mathematical induction thatun = 4(34)n − 2, for all positive integersn. [5]

3 The curveC has equation

xy + (x + y)3 = 1.

Show that
dy
dx

= −3
4 at the pointA (1, 0) onC. [3]

Find the value of
d2y

dx2
at A. [5]

4 Let

In = ã e

1
x2(ln x)n dx,

for n ≥ 0. Show that, for alln ≥ 1,

In = 1
3e3 − 1

3nIn−1. [4]

Find the exact value ofI3. [4]

5 The matrixA has an eigenvalueλ with corresponding eigenvectore. Prove that the matrix(A + kI),
wherek is a real constant andI is the identity matrix, has an eigenvalue(λ + k) with corresponding
eigenvectore. [2]

The matrixB is given by

B =  2 2 −3
2 2 3

−3 3 3

.

Two of the eigenvalues ofB are−3 and 4. Find corresponding eigenvectors. [3]

Given that( 1
−1
−2
) is an eigenvector ofB, find the corresponding eigenvalue. [1]

Hence find the eigenvalues ofC, where

C = −1 2 −3
2 −1 3

−3 3 0

,

and state corresponding eigenvectors. [3]
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6 The curveC has equationy = x2

x − 2
. Find the equations of the asymptotes ofC. [3]

Find the coordinates of the turning points onC. [3]

Draw a sketch ofC. [3]

7 Expand(ß + 1
ß)

4(ß − 1
ß)

2

and, by substitutingß = cosθ + i sinθ, find integersp, q, r, s such that

64 sin2θ cos4θ = p + q cos 2θ + r cos 4θ + s cos 6θ. [6]

Using the substitutionx = 2 cosθ, show that

ã 2

1
x4√(4− x2)dx = 4

3π + √
3. [4]

8 The cubic equationx3 − x2 − 3x − 10= 0 has rootsα, β, γ .

(i) Letu = −α + β + γ . Show thatu +2α = 1, and hence find a cubic equation having roots−α + β + γ ,
α − β + γ , α + β − γ . [5]

(ii) State the value ofαβγ and hence find a cubic equation having roots
1

βγ
,

1
γ α

,
1

αβ
. [5]

9 The planeΠ1 has parametric equation

r = 2i− 3j+ k + λ(i − 2j− k) + µ(i + 2j− 2k).
Find a cartesian equation ofΠ1. [4]

The planeΠ2 has cartesian equation 3x − 2y − 3ß = 4. Find the acute angle betweenΠ1 andΠ2. [3]

Find a vector equation of the line of intersection ofΠ1 andΠ2. [4]

10 Find the set of values ofa for which the system of equations

x − 2y − 2ß = −7,

2x + (a − 9)y − 10ß = −11,

3x − 6y + 2aß = −29,

has a unique solution. [4]

Show that the system has no solution in the casea = −3. [2]

Given thata = 5,

(i) show that the number of solutions is infinite, [2]

(ii) find the solution for whichx + y + ß = 2. [3]
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11 Answer onlyone of the following two alternatives.

EITHER

The curveC has cartesian equation

(x2 + y2)2 = a2(x2 − y2),
wherea is a positive constant. Show thatC has polar equation

r2 = a2 cos 2θ. [2]

SketchC for −π < θ ≤ π. [2]

Find the area of the sector betweenθ = −1
4π andθ = 1

4π. [3]

Find the polar coordinates of all points ofC where the tangent is parallel to the initial line. [7]

OR

Show that the substitutiony = xß reduces the differential equation

1
x

d2y

dx2
+ (6

x
− 2

x2
)dy

dx
+ (9

x
− 6

x2
+ 2

x3
)y = 169 sin 2x

to the differential equation

d2ß
dx2

+ 6
dß
dx

+ 9ß = 169 sin 2x. [4]

Find the particular solution fory in terms ofx, given that whenx = 0, ß = −10 and
dß
dx

= 5. [10]
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